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A generalization of the radial flash technique is presented whereby the thermal
diffusivity of an orthotropic solid is measured in directions parallel and per-
pendicular to the flash source. The theoretical formulation is based on a Green's
function approach which assumes a general orthotropic solid with three
mutually orthogonal thermal diffusivities (or conductivities). Using this approach,
a solution to this problem is presented which can be used to develop solutions
for arbitrary pulse waveforms and incident geometries. Analytical and numerical
results are presented for two-dimensional and three-dimensional cases of finite
and semiinfinite solids. Characteristic equations which describe the ratio of the
temperatures at two points along a principal axis are given. The equations show
excellent agreement with numerical predictions as well as experimental results.
A parameter estimation approach is given which improves on the accuracy of
the radial flash technique in the determination of thermal diffusivity from
experimental data.
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1. INTRODUCTION

Numerous techniques have been developed to measure thermal conduc-
tivity through both steady-state and transient schemes (cf, [1, 2]). Among
the most widely employed methods for planar specimens is an indirect
technique called the flash.diffusivity test [3]. In its most basic form, the
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flash diffusivity technique correlates a simple thermal response model for
isotropic, homogeneous materials with experimental data. Once the ther-
mal diffusivity is obtained from the semianalytical fit, the thermal conduc-
tivity is calculated. Since it is idealistic to assume that all of the boundary
conditions of the Parker technique will be met in a laboratory situation,
many corrections to the Parker analysis have been proposed for finite-pulse
time effects, heat losses, and nonuniform irradiation [4-9].

In cases of nonuniform heating, multidimensional heat flow effects are
induced in the material sample. Donaldson [10, 11] investigated an extreme
case of nonuniform heating in which only a small spot of the surface of the
sample was irradiated. This method was later used by Donaldson and
Taylor [12] to determine the thermal diffusivity in the radial direction by
taking the ratio of the temperatures at two points on the back surface. This
technique is known as the radial flash technique. This procedure was the
first extension of the Parker method which allowed the determination of
the thermal diffusivity of materials in directions perpendicular to the axis
of heat impulse. This data reduction scheme was also shown to be unaffected
by heat losses on the front and rear surfaces [13], independent of the heat
absorbed, and required no destructive sectioning to obtain material samples.
However, this technique was developed for isotropic materials and does
not fully describe the temperature response of orthotropic materials. It has
also been documented that the radial flash method is not as accurate as
Parker-based methods due to the sensitivity of the results on a knowledge
of the distance between the two surface temperatures [14]. The Parker
flash technique may be applied to orthotropic materials by destructive sec-
tioning of material samples perpendicular to the suspected principal axes of
heat flow. Since the radial flash technique is a nondestructive approach, it
offers some desirable advantages over unidirectional techniques provided
the accuracy can be improved. Variations of the radial flash technique were
employed in the measurement of the thermal conductivity of thin films
[15-18] and anisotropic materials [14, 19]. In the measurement of thin
films, the assumption of one-dimensional heat flow along the length of
the film is used to obtain the thermal diffusivity along that path without
regard for anisotropy. In the measurement of orthotropic materials, it is
assumed that the energy flash occurs on a transversely isotropic plane
which is a special case of orthotropy. Due to this assumption, this proce-
dure is applicable in only a limited sense to materials which exhibit full
orthotropic behavior by measuring only along principal directions. More
general considerations are important when applying this procedure to
heterogeneous materials which possess orthotropic symmetry, textured
metals, laminated composites, and other materials possessing an appropri-
ately oriented microstructure.
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Equation (3) is now equivalent to the differential equation for a homoge-
neous isotropic material in a space which is distorted from the original.
This equation can now be solved using any number of standard techniques
applicable to homogeneous isotropic materials and transformed back to

This paper presents the general solution to the differential equation
which describes the three-dimensional heat flow in a homogeneous ortho-
tropic slab subjected to an instantaneous heat pulse. In this analysis, no
plane of transverse isotropy is assumed. By treating such a case, a generalized
in-plane method is given which can be used for arbitrary pulse geometries
and waveforms. Both semiinfinite and finite geometries are treated, and
their implications for experimental procedures are discussed. Correlation of
the solution with numerical simulation and experimental data is presented,
demonstrating the validity of the procedure.

2. ANALYSIS

Consider a homogeneous orthotropic solid which is exposed to any
general thermal boundary condition. The governing heat conduction equa-
tion which describes the temperature distribution in the solid for this situa-
tion is given by
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Here g is a volumetric energy generation term, p is the density, c is the
specific heat of the material, and K, (i = x, y, z) are the mutually orthogo-
nal thermal conductivities. This differential equation may also be applied to
heterogeneous materials provided that the scale of the heterogeneity is suf-
ficiently small compared to the sample size [20-23]. In such a situation, we
will assume that volume averaged quantities sufficiently describe the
macroscopic material behavior. We may simplify the solution to this dif-
ferential equation by performing the following coordinate transformation
[24],

where K is the effective thermal conductivity given by K — ( K x K y K z ) 1 / 3 .
This results in the following governing differential equation:



the original space to obtain the solution. In the following analysis, we
employ a Green's function approach to determine the temperature distribu-
tion in a solid subjected to a uniform instantaneous flash on one surface.
The foundation of the following approach may be found in several sources
[24, 25] and is presented for a general understanding of the results.

2.1. A Solid of Finite Geometry

Consider a homogeneous orthotropic slab with an instantaneous sur-
face heat source over a symmetric planar region and having a uniform
initial temperature (t = 0) of zero as shown in Fig. 1. Inherent in this
analysis is the assumption that the geometric axes are aligned with the

Fig. 1. (a) Three-dimensional
orthotropic slab with incident heat
pulse and |b) quarter-symmetry
solution domain; the flash region
is the darkened square.
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three principal coordinate directions of heat flow. In addition, adiabatic
conditions are assumed to exist on all exterior boundaries. Due to the sym-
metry of the problem, only the-quarter portion of the slab depicted in
Fig. 1b need be analyzed. The boundary conditions for this problem in the
transformed coordinate system are

Due to the uniform initial temperature of zero and homogeneous boundary
conditions, the temperature distribution in the slab for t > 0 due to a single
point source may be determined by the integral [24],

where G represents the Green's function for this problem and g is the
energy generation due to an instantaneous point source at x" = f, y" = n',
and z" = 0 in the transformed coordinate system. The point source of
magnitude Q is assumed to be instantaneous and may be modeled as a
Dirac delta function which is absorbed in an infinitesimal depth at the
surface

Using the appropriate form of the multidimensional Green's function [cf. 24]
with Eqs. (8) and (9), the temperature distribution in the body due to a
point source is given by



Equation (12) reduces to the one-dimensional Parker solution if the limits
of integration in Eq. (11) are b and a. Other closed-form solutions may be
obtained for simple finite waveforms and simple pulse geometries which
may be described with linear functions. A simple uniform pulse of finite
duration may be included in Eq. (10) by replacing t with t — tc and
integrating with respect to tc over the pulse duration in Eq. (11). Without
loss of generality, numerical integration involving superposition of solu-
tions may be used to incorporate finite pulse time effects of arbitrary
waveforms and pulses of arbitrary geometry. In such cases, it may be more
feasible to use Eq. (8) directly without the use of Dirac delta functions. For
the common pulse geometry of a circular spot of radius r, Eq. (11) becomes

and for a line source of width 2A, Eq. (11) reduces to
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where ax, ay, and az are the thermal diffusivities in the x, y, and z direc-
tions, respectively. In order to determine the temperature distribution due
to the finite area flash source (Fig. 1b), we may use superposition to
include the contributions from a continuously distributed set of point sources
by integrating Eq. (10) over the flash region.

Thus, Eq. ( 1 1 ) presents a general solution of the temperature response due
to an arbitrary symmetric flash geometry. In the case of a square planar
source of width and height 2A (Fig. 1), this response becomes



Through the superposition principle presented by Eq. (11), any arbitrary
symmetric flash geometry can be handled. Assuming a square planar
geometry of width and height 2A, the temperature distribution becomes

Using the appropriate form of the Green's function along with Eqs. (8) and
(9), the temperature distribution due to an instantaneous point source in
the original frame is

Upon inspection of Eq. (14), it is evident that as the ratio az/L
2 becomes

infinite, the temperature solution approaches that of a one-dimensional
heat conduction problem which is assumed in the measurement of thin-film
conductivity by the flash method [17].

2.2. A Semiinfinite Solid

By considering the stolid in Fig. 1 to be infinite in the x-y plane, the
boundary conditions in Eqs. (4) and (5) become
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whereas a line source of width 2A oriented in the x direction is given by

In applying Eq. (13) to Eq. (17) , the result converges along principal direc-
tions to the solution of a circular disk source on a transversely isotropic
semiinfinite plane given by Carslaw and Jaeger [25]. Such an approach is
typical in the radial flash method and, therefore, shows the agreement of
the two approaches. The results presented thus far provide the temperature
distribution for an orthotropic adiabatic body subjected to an instanta-
neous pulse. These results may be extended to account for linear heat losses
(e.g., convection) with simple modifications [26]. For this analysis, the
simple adiabatic case presented is only considered.

3. DETERMINATION OF THERMAL DIFFUSIVITY IN MULTIPLE
DIRECTIONS

The thermal diffusivity of materials may be determined from tempera-
ture-time history data obtained from experiments similar to the radial flash
method By measuring the temperature response at multiple locations simul-
taneously, it is possible to measure the thermal diffusivity in both directions
parallel and perpendicular to the flash in one experiment. This may be
achieved through monitoring the front and rear surfaces simultaneously or
by single surface monitoring. Monitoring a single surface alone yields the
two principal diffusivities perpendicular to the flash direction in a straight-
forward manner. Once the in-plane parameters are determined, the principal
diffusivity parallel to the flash direction may be found. This is facilitated by
the correlation of the temperature response at a point with the full analytical
temperature solution since two of the material parameters are known. In the
situation where both the front and the rear surfaces are monitored, the
through-thickness thermal diffusivity can be determined from the ratio of
the front and rear temperatures of any two points along the same axis [12].
For two points along the axis of the flash [e.g., T(0, 0, 0, t) and T(0, 0, L, t)],
this temperature ratio will vary as



Fig. 2. Depiction of experimental coor-
dinate frame with arbitrary rotation relative
to the principal axes.

Equation (20) is the characteristic equation which describes the temperature
ratio of any two points along the z axis from the front and rear surfaces.
Equation (20) is independent of the heat absorbed and is valid regardless
of the lateral geometry of the sample, whether heat flow is unidirectional
or multidirectional, and regardless of the geometry of the incident flash.
This is due to the fact that any dependence which the temperature response
may have on the other coordinate directions is canceled out when forming
this ratio. Thus, linear heat losses in lateral directions do not affect results
obtained according to Eq. (20). Corrections for heat losses from the front
and rear surfaces may be made using any number of the aforementioned
techniques applied to the Parker flash method.

In order to determine the in-plane thermal diffusivities, a procedure
similar to that used to develop Eq. (20) is employed. A ratio of any two
temperatures recorded on the front or rear surface along a principal axis
will also yield the thermal diffusivity in that particular coordinate direction.
The semianalytical approach leads to the simplest data reduction methods
along principal axes. This occurs since the foundation of the approach,
Eq. (1), is written in the principal coordinate system. Under certain condi-
tions, the analysis is not limited to points which lie only along the principal
axes. This involves conditions where one principal axis is aligned per-
pendicular to the plane on which the flash is incident. With the use of
circular flash geometries in such cases, knowledge of the principal directions
within the plane need not be known a priori. In such cases, multiple tem-
perature ratios with respect to the center of the flash may be taken at fixed
angular distances, as shown in Fig. 2. In the analysis of each of these tem-
perature ratio responses, it can be assumed that a coupling exists between
the two in-plane principal diffusivities. In addition, it is assumed that the
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for a bounded region or the following for a semiinfinite solid:
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experimental axes are rotated relative to the principal axes by an angle 01.
By rewriting the analytical temperature solution in terms of the unknown
principal coordinate directions [i.e., X= X' cos(0N) + Y' sin(0n), Y =
X' sin(0n) + Y' cos(0n)], we introduce an additional fitting parameter into
our model. An iterative procedure can be used to determine both the angle
Ol and the two principal diffusivities until the solutions converge for all
in-plane temperature ratios. It is assumed in this case that 02 is the known
fixed angular distance. Since the angle ()1 is also determined using this pro-
cedure, the principal direction of heat flow may also be deduced. The use
of several temperature ratios from fixed angular distances to determine
principal diffusivities and directions of heat flow is analogous to the use of
the strain gauge rosette in solid mechanics for the determination of prin-
cipal stresses and strains.

Since a coupling does not exist along principal axes, the determination
of thermal diffusivity is more straightforward under these conditions. For
a body subjected to a line or square flash source, the thermal diffusivity in
the x direction may be found from the ratio of the temperatures at two
collinear points. Assuming t1 is at the origin and T2 is at some position
x = X, the ratio of the temperatures taken at these two points will vary
according to

It should be noted that Eqs. ( 2 1 ) and (22) are independent of the y and
: coordinates. Therefore, these are the characteristic equations which
describe the temperature ratio due to an instantaneous flash of any two
points along the .v axis in the same plane provided that it is a principal axis
for heat conduction. These equations hold regardless of unidirectional or
multidirectional heat flow, and the presence of heat losses in the other
coordinate directions. The independence of this result to heat losses along



one of the lateral boundaries was shown experimentally and numerically in
Ref. 26. Such independence is not a characteristic of the radial flash method.
In addition, these equations hold for both isotropic and orthotropic
materials. Thus, the response of the temperature ratio along a principal
axis may be characterized by a solution based on isotropic material proper-
ties. Hence, it is understood that the radial flash technique developed by
Donaldson and Taylor [12] may be applied to orthotropic materials
provided the measurements are taken along the principal axes. However,
the present derivations provide a more robust procedure in that it predicts
the temperature distribution within the solid for any flash geometry and
duration and may be used for off-axis measurements where a coupling of
principal diffusivities exists. This result allows for noncircular sample
geometries and measurements on orthotropic materials where the principal
directions of heat flow are unknown. In addition, this technique provides
a procedure to map diffusivity changes in materials with evolving micro-
structures which may induce changes in principal directions. Indeed, the
present solution can be used to assess whether orthotropy of heat conduc-
tion actually exists for materials which are assumed to be orthotropic.

For samples which cannot be considered semiinfinite with respect to
heat flow, the lateral boundary conditions of the specimen will play an
important role in determining the temperature distribution in the solid.
Modifications to the temperature solutions may be performed as aforemen-
tioned using heat loss correction procedures. However, if the temperature
measurement is taken over a sufficiently small time, the heat flow will not
interact with the boundaries, and thus, no heat loss corrections will be
needed. Such procedures are viable for materials possessing small a/L2

ratios. Due to the independence of thickness displayed in Eqs. (21) and
(22), this measurement technique may be used on samples of any thickness,
providing a significant advantage for thin films which display statistical
homogeneity. Films which are on the order of microns in thickness do not
always display homogeneous behavior and, therefore, may not be amen-
able to this technique. Thick section samples coupled with rear surface
imaging also limit the applicability of this method. In such cases, front
surface imaging should be used to determine the principal diffusivities.

As stated previously, one of the problems associated with determining
the in-plane diffusivity is the loss of accuracy compared to the unidirec-
tional flash method. This is due to the sensitivity of the estimated
parameter on the accuracy of the distance between the two temperatures
recorded in the in-plane direction. Errors associated with the precise
measurement of this distance may be eliminated by introducing it as a
second variable in any parameter estimation procedure. A plot of the
sensitivity coefficients of the thermal diffusivity and distance parameters for
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Fig. 3. Temperature ratio and sensitivity coefficients
for the thermal diffusivity and position of the second tem-
perature measurement for Eq. ( 2 1 ) . (C) Temperature
ratio; ( A) position coefficient; (- -) diffusivity coefficient.

Eq. (21) is shown in Fig. 3. In analyzing this plot, it can be seen that the
sensitivity of the position of the second temperature point and the thermal
diffusivity are independent parameters [27], Thus, it is possible to use a
least-squares fitting procedure with these two parameters. These param-
eters can be determined independently, increasing the accuracy of in-plane
diffusivity methods. By taking the ratio of the sensitivity coefficients of
these two parameter, it is shown in Fig. 4 that the unique determination of
these parameters will become difficult or impossible for Fourier numbers
greater than 0.01. To verify this procedure, a temperature-time data set
with known parameters was created. Using a nonlinear least-squares fitting
procedure and random initial guesses for the parameters, the values were
determined for both variables.

Fig. 4. Range of independence for the two-parameter
estimation based on the slope of the sensitivity coef-
ficient ratio. ( ) Diffusivity/position coefficient ratio;
( A ) temperature ratio.



Fig. 5. Comparison of numerical and semianalytical results
using Eq. (20) for through-thickness diffusivity. (—) Semi-
analytical; (O) ABAQUS [28].

In order to investigate further the validity of the derived temperature
solutions, a finite-element study was performed. A three-dimensional rec-
tangular geometry was analyzed using the commercial finite-element code
ABAQUS [28]. The flash was input into the model as an approximation
of an instantaneous step function of a uniform flux. This flux was incident
over a finite width of several elements for a duration of 1 ms. The half-flash
width, A, was 0.45 cm, while the width, height, and thickness were 7.56, 7.56,
and 2.0cm, respectively. The thermal conductivity ratios were K z / K x = 5
and Kz/Ky= 10, and the heat capacity was 1 J .cm-3 • K ~ ' . Temperature
ratios of the nodes along the axis of the flash on the front and rear surfaces
were calculated and correlated using Eq. (20). For the in-plane simulations,
temperature ratios of in-plane nodes on the rear surface with respect to the
node at the center of the flash (x=y = 0, z = 2.0) were calculated for
correlation with Eq. (21). For the in-plane directions, two temperature
ratios were formed for each direction with respect to the center tem-
perature. The locations of the second temperature points were 0.49 and
0.82 cm away from the center along both the x and the y axes. This was
done to confirm the results and convergence of the model at multiple loca-
tions along the same direction. Using a least-squares routine employing
Eqs. (20) and (21) to fit the data, the calculated thermal diffusivity was
within 0.2% of the known values for all simulations. Plots of the data
correlation are shown in Figs. 5 and 6. In Fig. 6, only one curve is shown
for both in-plane directions. Since the geometric model and temperature
measurement points are symmetric, the responses in the x and y directions
collapse onto the same nondimensional curve. Correlations with front sur-
face simulations (z = 0) using Eqs. (21) and (22) showed similar results.
This behavior shows the depth independence of the in-plane method and
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Fig. 6. Comparison of numerical and semianalytical results
using Eq. ( 2 1 ) for in-plane thermal diffusivity determination in
the x and y directions. N = normalized position coordinate
x/a or y/b. In the case shown, a = b = 7.56cm. ( • • - ) Semi-
analytical; (O) ABAQUS [28]; (D) ABAQUS [28].

that the sample behaved as a semiinfinite medium over the duration of the
numerical analysis.

4. EXPERIMENTS

In order to study the feasibility of implementing this technique, an
experimental program was undertaken. Room-temperature flash diffusivity
measurements were made at Oak Ridge National Laboratory on carbon-
coated Nicalon-reinforced lithium aluminosilicate glass (CC-SiC/LAS).
Details of the experimental procedure, as well as results on a second
material system, are given in Ref. 26. The samples were made with unidirec-
tional reinforcement and contained 40% fiber volume fraction. All tests
were performed on a single panel which was 15.24 x 15.24 x 0.251 cm thick.
For comparison, small samples were also cut in order to measure the ther-
mal diffusivity along and transverse to the fiber direction with the Parker
technique. These samples were 0.278cm long, 1.27cm wide, and 0.251 cm
thick. Samples were checked with an optical microscope to ensure that no
damage was introduced from cutting, which may affect the measurements.

The panel was irradiated on the plane transverse to the fibers by a
xenon flash lamp. A mask with a square hole 1.27x 1.27cm was used to
provide the desired flash geometry. Care was also taken to reduce the
amount of light dispersion passing through the mask by mounting the
panel 0.5 mm from the mask. The temperature on the rear surface was
monitored using a 256 x 256 focal plane array InSb infrared detector with
a temperature resolution of 0.015°C. The rear surface temperature was
recorded in snapshot mode at a rate of 10 Hz for a period of 20 s.



Fig. 7. Correlation of experimental data from CC-
SiC/LAS using a two-parameter nonlinear least-
squares procedure and Eq. ( 2 1 ) . (A) Transverse
direction (a = 0.008 cm2 • s - 1 ) . (B) Fiber direction
(a = 0 .00836cm 2 .s - 1 ) . (O) Experimental; (—)
semianalytical.

The in-plane temperature ratios were formed by using the temperature
at the center of the flash and at a point between 0.6 and 0.75 cm away.
Measurements were made both along the fiber and transverse to the direc-
tions. A nonlinear least-squares procedure was used to fit the experimental
data and to determine both the thermal diffusivity and the distance between
the two in-plane temperatures (Fig. 7). The results of this procedure were
compared to the Parker-type flash method with heat loss correction taken
into account by the method of Clark and Taylor [7]. The results, presented
in Table I, show excellent agreement between the two methods, with thermal
diffusivity values of 0.008344 and 0.00796 cm 2 -s - 1 in the fiber and trans-
verse directions, respectively. These values are consistent with the results
presented for this material system [29]. Thus, it is seen that the in-plane
method combined with the two-parameter least-squares estimation is an
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Table I. Comparison of In-Plane and Unidirectional Flash Techniques

Fiber direction

Mean
SD

Clark and Taylor [7]
% difference

Diffusivity
( c m 2 . s - 1 )

0.00834
0.00018
0.0085
1.9

Transverse direction

Mean
SD

Clark and Taylor [7]
% difference

Diffusivity
( c m 2 . s - 1 )

0.00796
0.00011
0.0078
2.0

accurate nondestructive method. It should also be noted that the data
reduction scheme used did not account for heat loss correction for the in-
plane measurements. Due to the very low ratio of a to the in-plane dimen-
sions ( x 0.001), there was no heat loss at the lateral boundaries of the sample
for the time frame of the in-plane tests.

5. CONCLUSION

The generalization of the radial flash technique presented here can be
used as a powerful tool in the determination of thermal diffusivity. The
analytical formulation provides a general approach to the application of
flash diffusivity to anisotropic materials which is valid for an arbitrary flash
geometry and flash duration. It is not limited to measurements along prin-
cipal axes of heat flow. Thermal diffusivities can be inferred from experi-
ments by fitting and matching a semianalytical scheme where the dif-
fusivities are determined parameters. By including a second parameter into
the nonlinear least-squares fitting procedure, the accuracy of the method is
shown to be comparable to the widely used Parker flash-type method. For
the measurement of in-plane properties, the use of materials and geometries
which may be considered semiinfinite over the test duration require no heat
loss correction schemes. The further development of this technique, coupled
with micromechanical studies, may also lead to a rapid quality control
measurement system, especially for components designed for thermal appli-
cations. Since no destructive sectioning is required, the application of this
procedure should benefit the measurement of thermal diffusivity and con-
ductivity of expensive and unique engineering components, and allow for
the in situ characterization of materials. Furthermore, progressive degrada-
tion of thermal diffusivity and conductivity of orthotropic solids and thins
films due to process or service-induced damage may potentially be resolved
with this technique in a nonintrusive manner. Connections between
material damage or degradation and conductivity may therefore permit
exploitation of the technique as an indirect measure of such degradation.
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